Kittel Chapter 9
Fermi Surfaces and Metals



Few people would define a metal as “ a solid with a Fermi surface.”
This may nevertheless be the most meaningful definition of a metal
one can give today; It represents a profound advance in the
understanding of why metals behave as they do. The concept of the
Fermi surface, as developed by quantum physics, provides a precise

explanation of the main physical properties of metals.

A. R. Mackintosh

(1936-1995)
Magnetism and neutron scattering;
rare-earth metals; solid-state physics



Kittel Chapter 6
FREE ELECTRON GAS IN THREE DIMENSIONS
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Periodic boundary conditions
Ylx + L,y,z) = P(x,y,2) , (8)

Wave functions satisfying the free particle Schrodinger equation,
and the periodicity condition are of the form of a traveling plane wave:

Exp (ikL) = 1

k=+n2z/L (9)
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Figure 4 In the ground state of a system of N free
electrons the occupied orbitals of the system fill a
sphere of radius kr, where € = A%3/2m is the energy of
an electron having a wavevector k.
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ek = e+ A . (12)

the operator p = —ihV,
P(r) = —iiVia(r) = ki (r) , (13)

so that the plane wave ¢ is an eigenfunction of the linear momentum with the
eigenvalue 7ik. | |

In the ground state of a system of N free electrons, the occupied orbitals
may be represented as points inside a sphere in k space.
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€F = at the Fermi surface €, k; (14)
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Figure 2 (a) Plot of energy € versus wavevector k for a free electron. (b) Plot of energy versus
wavevector for an electron in a monatomic linear lattice of lattice constant a. The energy gap E,

shown is associated with the first Bragg reflection at k = + m/a; other gaps are found at =+ nw/a, for
integral values of n.

The Bragg condition (k + G)? = k? for diffraction of a wave of wavevector k
becomes in one dimension

1
k=1 -G=1nm/a, Solutions in 1-D  (4)

Where G = 2mn/a is a reciprocal lattice vector and n is an integer. The first
reflections and the first energy gap occur at k = + m/a. The region in k space
between - m/a and r/a is the first Brillouin zone of this lattice. Other energy gaps
occur for other values of the integer n.



The wavefunctions atl k = =+ 7r/alare not the traveling waves exp(imx/a) or
exp(—imx/a) of free electrons. At these special values of k the wavefunctions are
made up of equal parts of waves traveling to the right and to the left. When the
Bragg reflection condition k = = /a is satisfied by the wavevector, a wave
traveling to the right is Bragg-reflected to travel to the left. and vice versa.
Each subsequent Bragg reflection will reverse the direction of travel of the
wave. A wave that travels neither to the right nor to the left is a|standing wave;:
it doesn’'t go anywhere.

The time-independent state is represented by standing waves. We can
form two different standing waves from the two traveling waves exp(=*imx/a),
namely

Standing wave solutions

F:p(+) = exp(imx/a) + exp(—imx/a) = 2 cos (mwx/a) ;

(5)

Y(—) = exp(imx/a) — exp(—imx/a) = 2i sin (7x/a) .

—

The standing waves are labeled (+) or (—) according to whether or not they
change sign when —x is substituted for x. Both standing waves are composed of
equal parts of right- and left-directed traveling waves.



Origin of the Energy Gap

The two standing waves ¥(+) and (—) pile up electrons at different re-
gions, and therefore the two waves have different values of the potential
energy. This is the origin of the energy gap. The probability density p of a
particle is ¢* = [y|*>. For a pure traveling wave exp(ikx), we have p =
exp(—ikx) exp(ikx) = 1, so that the charge density is constant. The charge den-
sity is not constant for linear combinations of plane waves. Consider the stand-
ing wave {(+) in (5); for this we have

p(+) = [Y(+)]* « cos® mx/a .

This function piles up electrons (negative charge) on the positive ions centered
at x =0, a, 2a, . . . in Fig. 3, where the potential energy is lowest.
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Figure 3 (a) Variation of potential energy of a conduction electron in the field of the ion cores of
a linear lattice. (b) Distribution of probability density p in the lattice for |[y(—)|® x sin® 7x/a;
|y(+)|* « cos® mx/a; and for a traveling wave. The wavefunction Y{(+) piles up electronic charge on
the cores of the positive ions, thereby lowering the potential energy in comparison with the average
potential energy seen by a traveling wave. The wavefunction ¥(—) piles up charge in the region

between the ions, thereby raising the potential energy in comparison with that seen by a traveling
wave. This figure is the key to understanding the origin of the energy gap.
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e Felix Bloch

their development of new ways .
and methods for nuclear magnetic (1905-1983, Swiss)
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BLOCH FUNCTIONS

F. Bloch proved the important theorem that the solutions of the Schro-
dinger equation for a periodic potential must be of a special form:

Yi(r) = uy(r) exp(ik - r) , (7)

where u,(r) has the period of the crystal lattice with uy(r) = u(r + T). The
result (7) expresses the Bloch theorem:

The eigenfunctions of the wave equation for a periodic potential are
the product of a plane wave exp(ik - r) times a function uy(r) with the
periodicity of the crystal lattice.

A one-electron wavefunction of the form (7) is called a Bloch function and
can be decomposed into a sum of traveling waves, as we see later. Bloch func-
tions can be assembled into localized wave packets to represent electrons that
propagate freely through the potential field of the ion cores.



http://en.wikipedia.org/wiki/Nobel_Prize

Restatement of the Bloch Theorem

Once we determine the C’s from (27), the wavefunction (25) is given as

ZCk G) ¢ik—C)x (29)

which may be rearranged as

- (Z C(k = G) e-—iCx) eiln - ezkxuk(x) ,
G

with the definition

wx) = D, Clk — G) e~iG* .
G

Because ui(x) is a Fourier series over the reciprocal lattice vectors, it is
invariant under a crystal lattice. translation T, so that ux(x) = ui(x + T). We
verify this directly by evaluating ui(x'+ T):

ux+ T) =2 €k — G) ¢ Gt = ¢~CT[F C(k — G) e™'¢*] = 7T uilx) .

Because exp(—iGT) = 1 by (2.17), it follows that ugfx + T) = ui(x), thereby es-
tablishing the periodicity of u. This is an alternate and exact proof of the Bloch
theorem and is valid even when the ;. are degenerate.




Fermi surface

The Fermi surface is the surface of constant energy €z in k space. The
Fermi surface separates the unfilled orbitals from the filled orbitals, at absolute
zero. The electrical properties of the metal are determined by the shape of the
Fermi surface, because the current is due to changes in the occupancy of states

near the Fermi surface.

The shape may be very intricate in a reduced zone scheme and yet have a
simple interpretation when reconstructed to lie near the surface of a sphere.
We exhibit in Fig. 1 the free electron Fermi surfaces constructed for two metals
that have the face-centered cubic crystal structure: copper, with one valence
electron, and aluminum, with three. The free electron Fermi surfaces were
developed from spheres of radius kr determined by the valence electron con-
centration. How do we construct these surfaces from a sphere? The construc-
tions require the reduced and periodic zone schemes.

The shape of Fermi surface of copper is deformed by interaction with the lattice.
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Figure 15  Brillouin zones of
the face-centered cubic lattice. 9
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Zone 3

Also refer to

page 20, Fig. 8
The shape of Fermi surface of Zone 2
copper is deformed due to the
interaction with the lattice.
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Figure 1 Free electron Fermi surfaces for fcc metals with one (Cu) and three (Al) valence electrons
per primitive cell. The Fermi surface shown for copper has been deformed from a sphere to agree
with the experimental results. The second zone of aluminum is nearly half-filled with electrons.
(A. R. Mackintosh.)



Reduced Zone Scheme

It is always possible to select the wavevector index k of any Bloch function
to lie within the first Brillouin zone. The procedure is known as mapping the
band in the reduced zone scheme.

If we encounter a Bloch function written as Y (r) = e* Ty (r), with k’
outside the first zone, as in Fig. 2, we may always find a suitable reciprocal
lattice vector G such that k = k' + G lies within the first Brillouin zone. Then

e(r) = € Tupo(r) = (e Tue(r))

= ¢*Tu(r) = d(r) ,

(1)

where [uy(r) = e~ C u(r). Both e7*“T and u(r) are periodic in the crystal lat-
tice, so u(r) is also, whence Yu(r) is of the Bloch form.




k, Reduced Zone Scheme

A e ey

G

a

Figure 2 First Brillouin zone of a square lattice of side a. The wavevector k' can be carried into the
first zone by forming k' + G. The wavevector at a point A on the zone boundary is carried by G to
the point A’ on the opposite boundary of the same zone. Shall we count both A and A’ as lying in
the first zone? Because they can be connected by a reciprocal lattice vector, we count them as one
identical point in the zone.



Even with free electrons it is useful to work in the reduced zone scheme,
as in Fig. 3. Any energy € for k' outside the first zone is equal to an € in the

first zone, where k = k' + G. Thus we need solve for the energy only in the

first Brillouin zone, for each band. An energy band is a single branch of the €,

versus k surface.

In the reduced zone scheme we should not be surprised to find different
energies at the same value of the wavevector. Each different energy character-
izes a different band.

Two wavefunctions at the same k but of different energies will be indepen-
dent of each other: the wavefunctions will be made up of different combinations
of the plane wave components expli(k + G) - r] in the expansion of (7.29). Be-
cause the values of the coefficients C(k + G) will differ for the different bands
we should add a symbol, say n, to the C’s to serve as a band index: C,(k + G).

Thus the Bloch function for a state of wavevector k in the band n can be written
as

ot = explik - 1), k() = g C,.k + G) explikk + G) - r] .
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Figure 3 Energy-wavevector relation €, = A2k*2m for free electrons as drawn in the reduced zone
scheme. This construction often gives a useful idea of the overall appearance of the band structure
of a crystal. The branch AC if displaced by —2/a gives the usual free electron curve for negative k,
as suggested by the dashed curve. The branch A’C if displaced by 27/a gives the usual curve for
positive k. A crystal potential U(x) will introduce band gaps at the edges of the zone (as at A and A')
and at the center of the zone (as at C). The point C when viewed in the extended zone scheme falls
at the edges of the second zone. The overall width and gross features of the band structure are often
indicated properly by such free electron bands in the reduced zone scheme.




Periodic Zone Scheme

We can repeat a given Brillouin zone periodically through all of wavevec-
tor space. To repeat a zone, we translate the zone by a reciprocal lattice vector.
If we can translate a band from other zones into the first zone, we can translate

a band in the first zone into every other zone. In this scheme the energy € of
a band is a periodic function in the reciprocal lattice:

€k = €k+G - (2)
Here €., ¢ is understood to refer to the same energy band as e.

The result of this construction is known as the periodic zone scheme. The

periodic property of the energy also can be seen easily from the central equa-
tion (7.27).

v =2, Ck) e ,
j..

A — €CK) + >, UsClk—CG)=0 .

G




Consider for example an energy band of a simple cubic lattice as calculated
in the tight-binding approximation in (13) below:

€r = —a — 2y (cos k.a + cos kya + cos k.a) , (3)

where a and 7y are constants. A reciprocal lattice vector of the sc lattice is
G = (27/a)k; if we add this vector to k the only change in (3) is

cos k.a — cos (k, + 2m/a)a = cos (k.a + 2m) ,

but this is identically equal to cos k.a. The energy is unchanged when the

wavevector is increased by a reciprocal lattice vector, so that the energy is a

periodic function of the wavevector.




Extended zone

Figure 4 Three energy bands of a linear lattice plotted in

the extended (Brillouin), reduced, and periodic zone schemes.

Reduced zone

Three different zone schemes are useful (Fig. 4):

e The extended zone scheme in which different
bands are drawn in different zones in
wavevector space.

e The reduced zone scheme in which all bands
are drawn in the first Brillouin zone.

| / e The periodic zone scheme in which every

band is drawn in every zone.

Periodic zone k—




CONSTRUCTION OF FERMI SURFACES

We consider in Fig. 5 the analysis for a square lattice. The equation of the
zone boundaries is 2k -+ G + G2 = 0 and is satisfied if k terminates on the plane
normal to G at the midpoint of G. The first Brillouin zone of the square lattice is

the area enclosed by the perpendicular bisectors of G; and of the three recipro-
cal lattice vectors equivalent by symmetry to Gl in Fig. 5a. These four recipro-
cal lattice vectors are = (2m/a)k, and =+ (27T/a)k

The second zone is constructed from G, and the three vectors equivalent
to it by symmetry, and similarly for the third zone. The pieces of the second
and third zones are drawn in Fig. 5b.

To determine the boundaries of some zones we have to consider sets of
several nonequivalent reciprocal lattice vectors. Thus the boundaries of sec-
tion 3, of the third zone are formed from the perpendicular bisectors of three

G’s, n\a{nely @mla)k,; (Amlak,; and @m/a)(k, + k,).

in Fig. 6
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Figure 5 (a) Construction in k space of the first three Brillouin zones of a square lattice. The three
shortest forms of the reciprocal lattice vectors are indicated as G,, Gy, and G3. The lines drawn are
the perpendicular bisectors of these G’s. (b) On constructing all lines equivalent by symmetry to
the three lines in (a) we obtain the regions in k space which form the first three Brillouin zones. The
numbers denote the zone to which the regions belong; the numbers here are ordered according to
the length of the vector G involved in the construction of the outer boundary of the region.
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Figure 6 Brillouin zones of a square lattice in two dimensions. The
circle shown is a surface of constant energy for free electrons; it will be
the Fermi surface for some particular value of the electron concentra-
tion. The total area of the filled region in k space depends only on the
electron concentration and is independent of the interaction of the
electrons with the lattice. The shape of the Fermi surface depends on
the lattice interaction, and the shape will not be an exact circle in an
actual lattice. The labels within the sections of the second and third
zones refer to Fig. 7.




The free electron Fermi surface for an arbitrary electron concentration is
shown in Fig. 6. It is inconvenient to have sections of the Fermi surface that
belong to the same zone appear detached from one another. The detachment

can be repaired by a transformation to the reduced zone scheme.

We take the triangle labeled 2, and move it by a reciprocal lattice vector
G = —(27T/a)i<x such that the triangle reappears in the area of the first Brillouin
zone (Fig. 7). Other reciprocal lattice vectors will shift the triangles 2, 2., 24 to
other parts of the first zone, completing the mapping of the second zone into
the reduced zone scheme. The parts of the Fermi surface falling in the second
zone are now connected, as shown in Fig. 8.

A third zone is assembled into a square in Fig. 8, but the parts of the
Fermi surface still appear disconnected. When we look at it in the periodic
zone scheme (Fig. 9), the Fermi surface forms a lattice of rosettes.
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Figure 7 Mapping of the first, second. and third Brillouin zones in the reduced zone scheme. The

sections of the second zone in Fig. 6 are put together into a square by translation through an

appropriate reciprocal lattice vector. A different G is needed for each piece of a zone.

1st zone 2nd zone 3rd zone

Figure 8 The free electron Fermi surface of Fig. 6, as viewed in the reduced zone scheme. The
shaded areas represent occupied electron states. Parts of the Fermi surface fall in the second, third,
and fourth zones. The fourth zone is not shown. The first zone is entirely occupied.




Periodic zone scheme

Figure 9 The Fermi surface in the third zone as
drawn in the periodic zone scheme. The figure was
constructed by repeating the third zone of Fig. 8.




Nearly Free Electrons

How do we go from Fermi surfaces for free electrons to Fermi surfaces for

nearly free electrons? We can make approximate constructions freehand by the
use of four facts:

e The interaction of the electron with the periodic potential of the crystal
causes energy gaps at the zone boundaries.

e Almost always the Fermi surface will intersect zone boundaries perpendicu-
larly (see below). See page 37, 38, 39

* The crystal potential will round out sharp corners in the Fermi surfaces.

e The total volume enclosed by the Fermi surface depends only on the electron
concentration and is independent of the details of the lattice interaction.

We cannot make quantitative statements without calculation, but qualitatively
we expect the Fermi surfaces in the second and third zones of Fig. 8 to be
changed as shown in Fig. 10.
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Figure 10 Qualitative impression of the effect of a weak periodic crystal potential on the Fermi
surface of Fig. 8. At one point on each Fermi surface we have shown the vector gradye. In the
second zone the energy increases toward the interior of the figure, and in the third zone the energy
increases toward the exterior. The shaded regions are filled with electrons and are lower in energy

nshaded regions. We shall see that a Fermi surface like that of the third zone is electron-
like, whereas one like that of the second zone is holelike. It is said that electrons sink and holes
float.




Freehand impressions of the Fermi surfaces derived from free electron

surfaces are useful. Fermi surfaces for free electrons are constructed by a pro-
cedure credited to Harrison, Fig. 11. The reciprocal lattice points are deter-
mined, and a free-electron sphere of radius appropriate to the electron concen-
tration is drawn around each point. Any point in k space that lies within at least
one sphere corresponds to an occupied state in the first zone. Points within at

least two spheres correspond to occupied states in the second zone, and simi-
larly for points in three or more spheres.

We said earlier that the alkali metals are the simplest metals, with weak
interactions between the conduction electrons and the lattice. Because the
alkalis have only one valence electron per atom, the first Brillouin zone bound-
aries are distant from the approximately spherical Fermi surface that fills one-
half of the volume of the zone. It is known by calculation and experiment that
the Fermi surface of Na is closely spherical, and that for Cs the Fermi surface is
deformed by perhaps 10 percent from a sphere.

The divalent metals Be and Mg also have weak lattice interactions and

nearly spherical Fermi surfaces. But because they have two valence electrons
each, the Fermi surface encloses twice the volume in k space as for the alkalis.
That is, the volume enclosed by the Fermi surface is exactly equal to that of a
zone, but because the surface is spherical it extends out of the first zone and
into the second zone.




Figure 11 Harrison construction of free
electron Fermi surfaces on the second,
third, and fourth zones for a square lattice.

The Fermi surface encloses the entire first
zone, which therefore is filled with elec-
trons.




ELECTRON ORBITS, HOLE ORBITS, AND OPEN ORBITS

We saw in Eq. (8.7) that electrons in a static magnetic field move on a
curve of constant energy on a plane normal to B. An electron on the Fermi
surface will move in a curve on the Fermi surface, because this is a surface of
constant energy. Three types of orbits in a magnetic field are shown in Fig. 12.

The closed orbits of (a) and (b) are traversed in opposite senses. Because
particles of opposite charge circulate in a magnetic field in opposite senses, we
say that one orbit is electronlike and the other orbit is holelike. Electrons in

holelike orbits move in a magnetic field as if endowed with a positive charge.
This is consistent with the treatment of holes in Chapter 8.

In (c) the orbit is not closed: the particle on reaching the zone boundary at
A is instantly umklapped back to B, where B is equivalent to B’ because they
are connected by a reciprocal lattice vector. Such an orbit is called an open
orbit. Open orbits have an important effect on the magnetoresistance.

Vacant orbitals near the top of an otherwise filled band give rise to holelike
orbits, as in Figs. 13 and 14. A view of a possible energy surface in three
dimensions is given in Fig. 15.
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Figure 12 Motion in a magnetic field of the wavevector of an electron on the Fermi surface, in (a)
and (b) for Fermi surfaces topologically equivalent to those of Fig. 10. In (a) the wavevector moves
around the orbit in a clockwise direction; in (b) the wavevector moves around the orbit in a counter-
clockwise direction. The direction in (b) is what we expect for a free electron of charge —e: the
smaller k values have the lower energy, so that the filled electron states lie inside the Fermi
surface. We call the orbit in (b) electronlike. The sense of the motion in a magnetic field is opposite
in (a) to that in (b), so that we refer to the orbit in (a) as holelike. A hole moves as a particle of
positive charge e. In (c) for a rectangular zone we show the motion on an open orbit in the periodic
zone scheme. This is topologically intermediate between a hole orbit and an electron orbit.




Orbits that enclose filled states are electron orbits. Orbits that enclose
empty states are hole orbits. Orbits that move from zone to zone without clos-
ing are open orbits.

Figure 13 (a) Vacant states at the corners of an
almost-filled band, drawn in the reduced zone
scheme. (b) In the periodic zone scheme the
various parts of the Fermi surface are con-
nected. Each circle forms a holelike orbit. The
different circles are entirely equivalent to each
other, and the density of states is that of a single
circle. (The orbits need not be true circles: for
the lattice shown it is only required that the
orbits have fourfold symmetry.)




Figure 14 Vacant states near the top of an almost filled band in a two-
dimensional crystal. This figure is equivalent to Fig. 12a.
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Figure 15 Constant energy surface in the Brillouin zone of a simple cubic lattice, for the assumed
energy band €, = —a — 2y(cos k.a + cos k,a + cos k.a). (a) Constant energy surface € = —a. The
filled volume contains one elextron per primitive cell. (b) The same surface exhibited in the peri-
odic zone scheme. The connectiity of the orbits is clearly shown. Can you find electron, hole, and
open orbits for motion in a magnetic field Bz? (A. Sommerfeld and H. A. Bethe.)

Eq. 13
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Chapter 9
Electrons in a weak periodic potential

BRILLOUIN ZONES

Using the theory of electrons in a weak periodic potential to determine the complete
band structure of a three-dimensional crystal leads to geometrical constructions of
great complexity. It is often most important to determine the Fermi surface (page 141)
and the behavior of the &,(k) in its immediate vicinity.

In doing this for weak potentials, the procedure is first to draw the free electron
Fermi sphere centered at k = 0. Next, one notes that the sphere will be deformed
in a manner of which Figure 9.6 is characteristic'* when it crosses a Bragg plane and
in a correspondingly more complex way when it passes near several Bragg planes.
When the effects of all Bragg planes are inserted, this leads to a representation of the
Fermi surface as a fractured sphere in the extended-zone scheme. To construct the
portions of the Fermi surface lying in the various bands in the repeated-zone scheme
one can make a similar construction, starting with free electron spheres centered
about all reciprocal lattice points. To construct the Fermi surface in the reduced-zone
scheme, one can translate all the pieces of the single fractured sphere back into the
first zone through reciprocal lattice vectors. This procedure is made systematic
through the geometrical notion of the higher Brillouin zones.




The Fermi surface always intersects Brillouin zone boundary perpendicularly

(a)

(b)

Figure 9.6

(a) Free electron sphere cut-
ting Bragg plane located at
5K from the origin (Ug = 0).
(b) Deformation of the free
electron sphere near the

Bragg plane when U # 0.

The constant-energy surface
intersects the plane in two
circles, whose radii are cal-
culated in Problem 1.



Zone boundary

Figure 9 Solutions of (50) in the periodic zone scheme,
in the region near a boundary of the first Brillouin zone.

The units are such that U = —0.45; G = 2, and A%m = 1.
The free electron curve is drawn for comparison.
The energy gap at the zone boundary is 0.90. The value of

U has deliberately been chosen large for this illustration,

too large for the two-term approximation to be accurate.



Recall that the first Brillouin zone is the Wigner-Seitz primitive cell of the reciprocal
lattice (pages 73 and 89), i.e. the set of points lying closer to K = 0 than to any other

reciprocal lattice point. Since Bragg planes bisect the lines joining the origin to points
of the reciprocal lattice, one can equally well define the first zone as the set of points
that can be reached from the origin without crossing any Bragg planes.!?

Higher Brillouin zones are simply other regions bounded by the Bragg planes,
defined as follows:

The first Brillouin zone is the set of points in k-space that can be reached from
the origin without crossing any Bragg plane. The second Brillouin zone is the set of
points that can be reached from the first zone by crossing only one Bragg plane. The
(n + 1)th Brillouin zone 1s the set of points not in the (n — 1)th zone that can be
reached from the nth zone by crossing only one Bragg plane.

Alternatively, the nth Brillouin zone can be defined as the set of points that can be
reached from the origin by crossing n — 1 Bragg planes, but no fewer.

These definitions are illustrated in two dimensions in Figure 9.7. The surface of
the first three zones for the fcc and bec lattices are shown in Figure 9.8. Both definitions
emphasize the physically important fact that the zones are bounded by Bragg planes.
Thus they are regions at whose surfaces the effects of a weak periodic potential are
important (1.e., first order), but in whose interior the free electron energy levels are
only perturbed in second order.




Figure 9.7

[llustration of the definition of the Brillouin
zones for a two-dimensional square Bravais
lattice. The reciprocal lattice is also a square
lattice of side b. The figure shows all Bragg
planes (lines, in two dimensions) that lie within
the square of side 2b centered on the origin.

These Bragg planes divide that square into

regions belonging to zones 1 to 6. (Only zones

1, 2, and 3 are entirely contained within the
square, however.)




Figure 9.8

Surfaces of the first, second
(a) body-centered cubic and
(b) face-centered cubic crys-
tals. (Only the exterior sur-
faces are shown. It follows
from the definition on page
163 that the interior surface
of the nth zone is identical
to the exterior surface of the
(n — 1)th. zone.) Evidently
the surfaces bounding the
zones become increasingly
complex as the zone number
increases. In practice it is
often simplest to construct
free electron Fermi surfaces
by procedures (such as those
described in Problem 4) that
avoid making use of the ex-
plicit form of the Brillouin
zones. (After R. Liick, doc-
toral dissertation, Techni-
sche Hochschule, Stuttgart,
1965.)




It 1s very important to note that each Brillouin zone is a primitive cell of the
reciprocal lattice. This is because the nth Brillouin zone is simply the set of points
that have the origin as the nth nearest reciprocal lattice point (a reciprocal lattice
point K is nearer to a point k than k is to the origin if and only if k is separated from
the origin by the Bragg plane determined by K). Given this, the proof that the nth
Brillouin zone is a primitive cell is identical to the proof on page 73 that the Wigner-
Seitz cell (i.e., the first Brillouin zone) is primitive, provided that the phrase “nth
nearest neighbor” is substituted for “nearest neighbor” throughout the argument.

Because each zone is a primitive cell, there is a simple algorithm for constructing
the branches of the Fermi surface in the repeated-zone scheme!?:

1. Draw the free electron Fermi sphere.

2. Deform it slightly (as illustrated in Figure 9.6) in the immediate vicinity of every
Bragg plane. (In the limit of exceedingly weak potentials this step is sometimes
ignored to a first approximation.)

3. Take that portion of the surface of the free electron sphere lying within the nth
Brillouin zone, and translate it through all reciprocal lattice vectors. The resulting
surface-is the branch of the Fermi surface (conventionally assigned to the nth

band) in the repeated-zone scheme.'*




Generally speaking, the effect of the weak periodic potential on the surfaces
constructed from the free electron Fermi sphere without step 2, is simply to round
off the sharp edges and corners. If, however, a branch of the Fermi surface consists
of very small pieces of surface (surrounding either occupied or unoccupied levels,
known as “pockets of electrons” or “pockets of holes”), then a weak periodic potential
may cause these to disappear. In addition, if the free electron Fermi surface has
parts with a very narrow cross section, a weak periodic potential may cause it to
become disconnected at such points.

Some further constructions appropriate to the discussion of almost free electrons
in fcc crystals are illustrated in Figure 9.10. These free-electron-like Fermi surfaces
are of great importance in understanding the real Fermi surfaces of many metals.
This will be illustrated in Chapter 15.
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Figure 9.10

The free electron Fermi surfaces for face-centered cubic metals of valence 2 and 3. (For
valence 1 the surface lies entirely within the interior of the first zone and therefore remains
a sphere to lowest order; the surface for valence 4 is shown in Figure 9.9.) All branches
of the Fermi surface are shown. The primitive cells in which they are displayed have the
shape and orientation of the first Brillouin zone. However, the cell is actually the first zone
(i.e., is centered on K = 0) only in the figures illustrating the second zone surfaces. In the
first and third zone figures K = 0 lies at the center of one of the horizontal faces, while
for the fourth zone figure it lies at the center of the hexagonal face on the upper right
(or the parallel face opposite it (hidden)). The six tiny pockets of electrons constituting
the fourth zone surface for valence 3 lie at the corners of the regular hexagon given by
displacing that hexagonal face in the [111] direction by half the distance to the face op-
posite it. (After W. Harrison, Phys. Rev. 118, 1190 (1960).) Corresponding constructions
for body-centered cubic metals can be found in the Harrison paper.




Figure 9.9
The free electron Fermi sphere for a face-centered cubic metal of valence 4. The first zone

lies entirely within the interior of the sphere, and the sphere does not extend beyond the
fourth zone. Thus the only zone surfaces intersected by the surface of the sphere are the
(exterior) surfaces of the second and third zones (cf. Figure 9.8b). The second-zone Fermi
surface consists of those parts of the surface of the sphere lying entirely within the poly-
hedron bounding the second zone (i.e., all of the sphere except the parts extending beyond
the polyhedron in (a)). When translated through reciprocal lattice vectors into the first
zone, the pieces of the second-zone surface give the simply connected figure shown in (c).
(It is known as a ‘“‘hole surface”; the levels it encloses have higher energies than those
outside). The third-zone Fermi surface consists of those parts of the surface of the sphere
lying outside of the second zone (i.e., the parts extending beyond the polyhedron in (a))
that do not lie outside the third zone (i.e., that are contained within the polyhedron shown
in (b)). When translated through reciprocal lattice vectors into the first zone, these pieces
of sphere give the multiply connected structure shown in (d). The fourth-zone Fermi sur-
face consists of the remaining parts of the surface of the sphere that lie outside the third
zone (as shown in (b)). When translated through reciprocal lattice vectors into the first
zone they form the “pockets of electrons’” shown in (e). For clarity (d) and (e) show only
the intersection of the third and fourth zone Fermi surfaces with the surface of the first
zone. (From R. Liick, op. cit.)



